Experiences in moving from CRT to flat panel LCD monitors for diagnostic PACS workstations

L. H. Sim¹, K. L. Manthey², L. J. Caffery³

¹,²PACS Support, Princess Alexandra Hospital (PAH), Brisbane, Australia
³PACS Support, Royal Brisbane & Womens’ Hospital (RBWH), Brisbane, Australia

Keywords: PACS; diagnostic monitor; auto calibration; SNMP

INTRODUCTION

PAH and RBWH implemented PACS as part of the Queensland Health QPACS project that commenced in 1999. These implementations are based around the AGFA Impax® PACS, AGFA Web 1000 for enterprise delivery and AGFA CR. Towards the end of year 2004 it was evident from QA measurements and increasing failure rates, that the original CRT monitors (see Figure 1) were rapidly approaching their end of life. This represented an obvious problem for the hospitals in terms of maintaining a soft copy based radiology service. It also represented a problem for the product vendor (Agfa) in terms of an ability to continue to service superseded technology, plus the cost of providing that service.

PACS Support had previously undertaken studies[1] to define the requirements of a “diagnostic” monitor. As a consequence of these studies and the aging of the original CRT monitors, a decision was taken to move to high brightness, high resolution, monochrome LCD panels.

In collaboration with the vendor a plan was developed to deal with this problem. The vendor proposed to replace the CRT display monitors with Planar C3i and Planar PX212 LCD monitors, under the existing service contract terms in return for a continuing commitment on the part of the hospitals to the workstation service contracts. PAH and RBWH were able to completely replace their inventory of CRT “diagnostic” monitors with Planar C3i monochrome flat panels (see Figure 2). This monitor was known from previous evaluations[2] to be a high quality image viewing monitor suitable for radiological diagnostic imaging. The monitor replacement project was completed in December 2004 to the benefit of all parties involved.

METHODS and RESULTS

• RBWH has 28 dual monitor DS3000 with B&W monitors, 1 DS3000 with dual colour monitor needed for colour display of Doppler Ultrasound and 1 XA3000 in Coronary Care Unit with single colour monitor needed for display of cardiac Ultrasound images.
• PAH has 17 dual monitor DS3000, 2 quad monitor DS300, 2 dual monitor CS 5000 (all with hi brightness monochrome displays) and four dual monitor DS 3300 with colour display.
• S3 monitors were replaced at RBWH (50 C3i, 3 PX212 Planar Monitors).
• 54 monitors were replaced at PAH (46 C3i, 8 PX212 Planar Monitors).
• Display cards used were: Monochromatic Display: Planar DX2/pci dual display card. Colour Display: Matrox “Med” dual display card. All monitors were set up in portrait orientation at preference dictated by radiologists.
• All monochrome monitors were configured with luminance of 500 cd/m-2.
• Colour monitors were configured to maximum luminance of around 200 cd/m-2.
• Very positive feedback regarding image quality was received from radiologists.
• Centralised monitoring via Simple Network Management Protocol (SNMP) is performed by PACS support (see Figures 3, 4 and 5).

All monitors were acceptance tested to provide baseline performance data (see Figure 6). Ongoing QA is managed via auto calibration functions. Tests performed include conformance to the DICOM response function, and luminance measurements. The results are collected centrally via Simple Network Management Protocol (SNMP). This has removed the need for physical access to each monitor for manual calibration. Independent QA testing by medical physics based on TG18[3] is planned annually.

PROBLEMS EXPERIENCED

• Monitor flickering resolved by new video card on one DS3000.
• 1 Monitor has been replaced by manufacture in accordance with the bad pixel policy [4].
• Unable to run Quad displays initially. Problem was referred to Medlink (local agent) and then to Planar.
• Resolution of this issue involved the development by Planar of a driver modification for the Impax display software.
• Post installation support by Medlink has been proactive with rapid response and good escalation processes. All issues raised have been resolved.

FUTURE

• Planar C3i and PX212 image monitors have become the “de facto” standard monitor for future diagnostic stations at these institutions.
• Studies are progressing to compare the diagnostic efficacy of the C3i monitor against the PX212 monitor for computed radiography reporting of chest images.
• Diagnostic stations to be used for Digital Mammo will use the Planar C5i (5 megapixel monitor).

CONCLUSION

Clinical acceptance of the new monitors has been enthusiastic. The respective radiology departments at PAH and RBWH now have uniform high quality “diagnostic” monitor technology with images presented to the radiologist on monitors with demonstrated consistent performance settings.

REFERENCES


Figure 1: Original Agfa supplied CRT reporting monitors. These were 1k x 1k 20 inch landscape and 1k x 1.5k 21 inch portrait monitors supplied by Agfa as part of the original QPACS installation.

Figure 2: Planar C3i monochrome LCD display monitors in clinical application at PAH and RBWH.

Figure 3: SNMP monitor status web page at RBWH. The red alert indicates a possible error status. In this case it is a warning associated with the white level zero result as these monitors were “asleep” at the time of the test.

Figure 4: SNMP monitor status web page at PAH. Again the warning status is due to the respective monitors being “asleep” at the time of the test.

Figure 5: Monitor status and activity data for a single PACS workstation (Quad monitor configuration).

Figure 6: Typical Grayscale conformance curves for Planar C3i monitors.